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 A B S T R A C T 

This research includes longitudinal turning of Inconel 601 in a dry 
environment with PVD coated cutting inserts. Turning was performed 
for different levels of cutting speeds, feeds, depth of cuts and corner 
radius. After turning, the arithmetical mean surface roughness was 
measured. Mean arithmetic surface roughness values ranging from 
0.156 μm to 6.225 μm were obtained. Based on the obtained results, an 
artificial neural network (ANN) was created. This ANN model was used 
to predict surface roughness after machining for different variants of 
input variables. Performance evaluation of the generated model was 
performed on the basis of additional - confirmation experiments. The 
mean absolute errors are 0.005 μm and 0.012 μm for the training and 
confirmation experiments, respectively. The mean percentage errors 
are 0.894 % and 1.303 % for the training and confirmation 
experiments, respectively. The obtained results showcase the 
possibility of practical application of the developed ANN model. 
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1. INTRODUCTION 
 
By turning, workpieces can be machined to the 
final size and in the final quality of the machined 
surface. Finish turning of the workpieces avoids, 
or reduces, subsequent finishing treatments, 
which contributes to the reduction of associated 
costs. Surface roughness after turning is one of 
the most relevant parameters in terms of 
quality assessment, and it has a great influence 

on the performance and correct functioning of 
assemblies. Surface roughness is one of the 
most commonly used quality indicators, and is 
just as important as dimensional accuracy, 
geometrical tolerances and product 
specifications. Workpiece material, cutting 
tools, fixtures, machining parameters and 
machining conditions have a large influence on 
surface roughness. Workpieces made of 
different materials are machined by turning. 

https://www.jme.aspur.rs/
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The problem is significantly complicated if 
nickel-based alloys are machined by turning. 
One of these is Inconel 601. It is a relatively 
expensive material that is difficult to machine 
with intensive wear of the cutting tool and long-
term machining time, which results in a number 
of negative aspects. Therefore, predicting the 
machined Inconel surface roughness within 
acceptable tolerances can improve machining 
efficiency and reduce costs. 
 
In the previous period many researchers have 
analyzed surface roughness produced during 
turning of lnconel. Settineri [1] presented results 
obtained by turning lnconel 718 with coated 
inserts produced by PVD process. Three 
dedicated coatings, TiN+AITiN, TiN+AITiN+MoS2 
and CrN+CrN:C+C, applied by PVD on WC-Co 
inserts. AITiN-based coatings with an additional 
layer of MoS2, exhibited good performances in 
both dry and minimum quantity lubrication 
(MQL) condition. Tazehkandi et al. [2] 
investigated effect of machining parameters 
(cutting speed, feed and depth of cut) on surface 
roughness. The results were analysed using 
response surface methodology (RSM) and 
analysis of variance (ANOVA), and mathematical 
models for surface roughness were proposed. 
Results indicated that feed and cutting speed 
were the most effective parameters on the 
surface roughness. Hua and Liu [3] investigated 
the effects of cutting speed, feed and corner 
radius on surface roughness of Inconel 718 
during dry turning. The results indicate that the 
feed and the corner radius had dominant effect 
on the surface roughness. Yildirim et al. [4] 
focused on the development of nano MQL by 
adding hexagonal boron nitride (hBN) 
nanoparticles compared to pure MQL and dry 
machining in turning of Inconel 625. Tool life, 
surface roughness and tool wear were analyzed. 
The results showed that; 0.5 vol% hBN nanofluid 
was produced promising results for low surface 
roughness and high tool life. Deshpande et al. [5] 
used artificial neural network to predict surface 
roughness using machining parameters, force, 
sound and vibration in turning of Inconel 718. 
Experiments were performed by using 
cryogenically treated and untreated inserts. The 
models estimated surface roughness with more 
than 90% accuracy. Gurgen et. [6] investigated 
the influences of feed, corner radius, and insert 
coating methods, in the turning operation of 
Inconel 718, on the surface roughness and tool 

wear. The results showed that surface roughness 
was reduced using low feed and large corner 
radius. Furthermore, TiAlN coated inserts with 
PVD method provided better surface finish than 
TiCN-Al2O3-TiN coated inserts with CVD method. 
Xu et al. [7] analysed the influence of ultrasonic 
vibration-assisted turning on surface roughness 
and chip shape. Results indicated that ultrasonic 
amplitude exert considerable influences and that 
it can improve surface roughness. Bertolini et al. 
[8] evaluated the effect of MQL on the turning 
performances of Inconel 718 compared to dry 
and wet lubrication conditions. The feasibility of 
using graphene nanoplatelets as additives to a 
vegetable oil to form MQL mist was assessed. 
Results showed that the use of the nanofluid with 
the lowest graphene nanoplatelets size provided 
the best surface integrity compared to the ones 
obtained when using just MQL without any 
additive and wet lubricating conditions. Mou and 
Zhu [9] compared the vibration acceleration, 
surface roughness, and tool wear of liquid 
nitrogen (LN2) machining with dry machining. 
Use of LN2 improved the quality of the machined 
surface, reduced the tool–chip interface 
temperature and tool wear. Pinheiro et al. [10] 
evaluated turning of Inconel through the 
influence analysis of cutting speed, feed and 
lubrication parameters. Results showed that the 
feed increase led to an increase of surface 
roughness and tool wear. Yagmur [11] 
investigated tool life, tool wear, surface 
roughness and cutting forces in turning Inconel 
625 under different cooling conditions. 
Experiments were carried out under three 
different cutting conditions (dry, MQL, and vortex 
cooling methods). The best values for surface 
roughness were obtained with MQL. 
Dhananchezian [12] focused on experimental 
investigation for the varying cutting speed on 
temperature, surface finish, insert and chip form 
while turning Inconel 600 using TiAlN coated 
insert. A lowest surface roughness value was 
observed for the cutting velocity of 102 m/min. In 
all the cutting trials, the chips obtained were long 
and continuous. Akgun and Demir [13] focused 
on developing the mathematical model (by 
regression analysis) of surface roughness in the 
turning of Inconel 625 with cryogenically treated 
tungsten carbide inserts. It has been observed 
that the cutting speed has a maximum 
contribution on surface roughness. Khanna et al. 
[14] examined energy consumption, chip 
reduction coefficient and surface roughness at 
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different material removal rates (MRR) during 
turning of Inconel 718 under different cutting 
conditions (dry, wet and cryogenic). Surface 
roughness values for cryogenic turning were 
reduced in comparison to dry and wet turning at 
various MRR. Gong et al. [15] focused on turning 
Inconel 718 using different sustainable 
lubricating-cooling techniques. Cryogenic 
machining, MQL and nanofluid MQL were applied 
and their performances evaluated in comparison 
with dry and wet machining. The experimental 
results revealed that cryogenic machining offered 
overall better performances when compared to 
dry, wet, MQL and nanofluid MQL strategies: 
lower surface roughness, fewer surface defects 
and lower chip compression ratio were observed. 
Veerappan et al. [16] machined Inconel 600 in 
dry condition with cubic boron nitride (CBN) tool. 
The ANOVA was adopted to establish the 
correlation between the machining parameters 
and response parameter. Linear regression 
equation for surface roughness were used to 
predict the responses. ANOVA results for surface 
roughness concluded that cutting speed has 95% 
contribution followed by feed 4% and depth of 
cut 1%. Yashwant Bhise and Jogi [17] studied the 
effect of cutting speed and feed on surface 
roughness during turning of Inconel X-750 under 
dry environment by using PVD TiAlN coated 
negative inserts with small tool nose radius of 0.4 
mm. The feed has a greater impact on surface 
roughness. Tan et al. [18] investigated the effects 
of various turning parameters on the surface 
roughness for ceramic and carbide inserts. A 
quadratic surface roughness response model 
incorporating the cutting speed, depth of cut, and 
feed was developed. The results show that a 
smoother, more uniform surface was obtained 
when using a ceramic insert. Boumaza et al. [19] 
investigated the application of three multi-
objective optimization techniques (TOPSIS, DEAR 
and GRA) in order to achieve the best parameters 
represented by the surface roughness, the tool 
wear and the MRR during the turning of Inconel 
718 with a composite ceramic cutting tool 
following a Taguchi plan. The objective was to 
find out the best combination of the cutting speed, 
the feed, the depth of cut and the corner radius. 
The results achieved to demonstrate the 
effectiveness of three methods that have led to 
similar results represented by the optimal 
parameters. Hao et al. [20] established a multi 
input single output (MISO) multivariate Gaussian 
process regression (GPR) surface roughness 

prediction model with cutting speed, depth of cut, 
feed and rake angle as input variables and surface 
roughness as output variable. The experimental 
results showed that the average relative error of 
MISO multivariate GPR surface roughness 
prediction model was 1.5%. 
 
As it can be seen, different techniques and 
methods are used to study the surface 
roughness during the Inconel turning process. 
The experimental approach, as the basis of 
scientific research, is increasingly 
supplemented with modeling and optimization 
methods. Response surface methodology [21], 
artificial neural network [22], fuzzy method 
[23], gray relational analysis [24], particle 
swarm optimization [25] and genetic algorithm 
[26] are widely used to reduce the cost and time 
of experimental research. 
 
Unlike in the previous research, the goal of this 
research is to model the final turning process of 
Inconel 601, and develop an adequate model for 
predicting surface roughness. Modeling of the 
turning process was performed using an artificial 
neural network (ANN). The input variables are 
cutting speed, feed, depth of cut, and corner 
radius, and the output variable is surface 
roughness. The assessment of the possibility of 
predicting the output results using ANN was 
performed by comparing the measured and 
predicted values of the surface roughness, and it 
was quantitatively performed by calculating the 
percentage and absolute errors. 
 
 
2. METHODOLOGY 
 
Figure 1 shows the methodology applied in this 
research. 
 
The research was conducted on workpieces 
made of Inconel 601 whose chemical 
composition is: (58–63) % nickel, (21–25) % 
chromium, (1–1.70) % aluminum, ≤1 % copper, 
≤1 % manganese, ≤0.50 % silicon, ≤0.10 % 
carbon, ≤0.015 % sulphur and balanced iron. 
The physical and mechanical characteristics of 
steel Inconel 601 are: density = 8.11 g/cm3, 
melting point = 1349 °C, tensile strength = 760 
MPa, yield strength = 450 MPa, elongation at 
break = 42 %, brinell hardness =160 HB, 
thermal expansion coefficient = 13.75 μm/m°C 
and thermal conductivity = 11.2 W/mK. 
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Fig. 1. Methodology. 

 
Inconel 601 was used as the workpiece 
material. The workpiece was 40 mm in 
diameter and 400 mm long. Finish turning 
operations were performed on a CNC Turning 
Center (Mori Seiki Ecoline). Square-shaped 
turning inserts were used for all experiments. 
Additional information on the geometry and on 
the mechanical properties of the turning 
inserts are listed in Table 1. The turning inserts 
were clamped in a standard toolholder with an 
approach angle of 45°. 
 
During experimental research, corner radius r 
(mm), feed f (mm/rev), depth of cut ap (mm) 
and cutting speed vc (m/min) were selected as 
input variables. Levels of input variables are 
shown in Table 2. 

Table 1. Properties of the turning inserts. 

Operation type Finishing 

Insert mounting style code 3 

Fixing hole diameter 4.4 mm 

Insert size and shape CC09T3 

Insert thickness 4 mm 

Cutting edge count 2 

Inscribed circle diameter 9.5 mm 

Insert shape code C 

Cutting edge effective length 9.5 mm 

Clearance angle major 7 ° 

Major cutting edge angle 95 ° 

Substrate HC 

Coating PVD TiAlN+TiAlN 

 
Table 2. Levels of input variables 

Parameters 
Levels 

Minimum Medium Maximum 

r (mm) 0.2 0.4 0.8 

f (mm/rev) 0.05 0.1 0.15 

ap (mm) 1.2 1.4 1.6 

vc (m/min) 50 55 60 

 
The surface roughness (Ra) measurements were 
done on a Mitutoyo Surftest SV device with the 
following basic characteristics: measuring speed 
0.05 mm/s, stylus tip angle 60° and stylus tip 
radius 2 µm. The parameter Ra was evaluated 
within the evaluation length, which consists of 
five sampling lengths. The sampling length 
corresponds to the cut-off wavelength of the 
profile filter. Gaussian filter was used. The 
measurement was conducted with a cut-off 
length of 0.8 mm, a sampling length of 0.8 mm, 
and an evaluation length of 4 mm. Measurements 
were taken along the contour lines on the 
workpiece, in feed direction. All measurements 
were performed under controlled microclimatic 
conditions. 
 
After experimental research and measurements, 
the ANN model was created. The ANN should 
predict the output parameters of the machining 
process based on input parameters. 
 
Performance evaluation of the generated model 
was performed on bases of additional - 
confirmation experiments. 
 
Assessment of the possibility of predicting output 
results using ANN model was performed based 
on percentage error (PE) and absolute error (AE), 
according to the equations: 
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 𝑃𝐸 = |
𝑅𝑎𝑝−𝑅𝑎𝑚

𝑅𝑎𝑚
| ∙ 100% (1) 

 𝐴𝐸 = |𝑅𝑎𝑝 − 𝑅𝑎𝑚| (2) 

where: Rap - surface roughness predicted value, 
Ram - surface roughness measured value.  
 
Based on the obtained PE and AE results, the 
evaluation of assessments and evaluation of the 
possibility of application was performed, i.e. 
adequacy of ANN model and its application for 
prediction of surface roughness. 

3. RESULTS 
 
The experimental research was conducted 
according to a full factorial experiment. Given 
that all combinations of four input sizes at three 
levels were examined, a total of 81 experiments 
were conducted. Table 3 shows the results of 
measuring the surface roughness using the 
parameter Ra, which is most often measured in 
practice. 

 
Table 3. Results. 

No. r (mm) f (mm/rev) ap (mm) vc (m/min) Ram (µm) Rap (µm) AE (µm) PE (%) 

1 0.2 0.05 1.2 50 0.625 0.634 0.009 1.392 

2 0.4 0.05 1.2 50 0.313 0.315 0.002 0.551 

3 0.8 0.05 1.2 50 0.156 0.148 0.008 5.318 

4 0.2 0.1 1.2 50 2.504 2.497 0.007 0.279 

5 0.4 0.1 1.2 50 1.253 1.252 0.001 0.101 

6 0.8 0.1 1.2 50 0.626 0.622 0.004 0.616 

7 0.2 0.15 1.2 50 5.625 5.629 0.004 0.077 

8 0.4 0.15 1.2 50 2.813 2.811 0.002 0.065 

9 0.8 0.15 1.2 50 1.406 1.416 0.010 0.707 

10 0.2 0.05 1.4 50 0.638 0.642 0.004 0.676 

11 0.4 0.05 1.4 50 0.319 0.323 0.004 1.274 

12 0.8 0.05 1.4 50 0.159 0.156 0.003 2.134 

13 0.2 0.1 1.4 50 2.552 2.550 0.002 0.097 

14 0.4 0.1 1.4 50 1.275 1.279 0.004 0.324 

15 0.8 0.1 1.4 50 0.638 0.636 0.002 0.358 

16 0.2 0.15 1.4 50 5.738 5.740 0.002 0.028 

17 0.4 0.15 1.4 50 2.869 2.867 0.002 0.069 

18 0.8 0.15 1.4 50 1.434 1.438 0.004 0.309 

19 0.2 0.05 1.6 50 0.652 0.652 0.000 0.005 

20 0.4 0.05 1.6 50 0.325 0.330 0.005 1.656 

21 0.8 0.05 1.6 50 0.163 0.164 0.001 0.350 

22 0.2 0.1 1.6 50 2.604 2.602 0.002 0.081 

23 0.4 0.1 1.6 50 1.308 1.305 0.003 0.227 

24 0.8 0.1 1.6 50 0.656 0.650 0.006 0.964 

25 0.2 0.15 1.6 50 5.853 5.848 0.005 0.088 

26 0.4 0.15 1.6 50 2.925 2.921 0.004 0.146 

27 0.8 0.15 1.6 50 1.463 1.461 0.002 0.163 

28 0.2 0.05 1.2 55 0.643 0.632 0.011 1.734 

29 0.4 0.05 1.2 55 0.321 0.311 0.010 3.206 

30 0.8 0.05 1.2 55 0.161 0.147 0.014 8.596 

31 0.2 0.1 1.2 55 2.571 2.569 0.002 0.094 

32 0.4 0.1 1.2 55 1.286 1.277 0.009 0.697 

33 0.8 0.1 1.2 55 0.643 0.634 0.009 1.331 

34 0.2 0.15 1.2 55 5.786 5.800 0.014 0.245 

35 0.4 0.15 1.2 55 2.893 2.894 0.001 0.028 

36 0.8 0.15 1.2 55 1.446 1.449 0.003 0.218 

37 0.2 0.05 1.4 55 0.655 0.645 0.010 1.584 

38 0.4 0.05 1.4 55 0.328 0.322 0.006 1.976 
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39 0.8 0.05 1.4 55 0.164 0.165 0.001 0.656 

40 0.2 0.1 1.4 55 2.621 2.621 0.000 0.001 

41 0.4 0.1 1.4 55 1.311 1.303 0.008 0.584 

42 0.8 0.1 1.4 55 0.655 0.656 0.001 0.112 

43 0.2 0.15 1.4 55 5.898 5.908 0.010 0.167 

44 0.4 0.15 1.4 55 2.949 2.948 0.001 0.050 

45 0.8 0.15 1.4 55 1.475 1.473 0.002 0.123 

46 0.2 0.05 1.6 55 0.668 0.663 0.005 0.822 

47 0.4 0.05 1.6 55 0.334 0.336 0.002 0.659 

48 0.8 0.05 1.6 55 0.167 0.182 0.015 9.122 

49 0.2 0.1 1.6 55 2.671 2.677 0.006 0.220 

50 0.4 0.1 1.6 55 1.336 1.333 0.003 0.260 

51 0.8 0.1 1.6 55 0.668 0.681 0.013 1.974 

52 0.2 0.15 1.6 55 6.011 6.018 0.007 0.122 

53 0.4 0.15 1.6 55 3.005 3.003 0.002 0.083 

54 0.8 0.15 1.6 55 1.503 1.502 0.001 0.097 

55 0.2 0.05 1.2 60 0.667 0.667 0.000 0.056 

56 0.4 0.05 1.2 60 0.339 0.335 0.004 1.172 

57 0.8 0.05 1.2 60 0.167 0.165 0.002 1.462 

58 0.2 0.1 1.2 60 2.667 2.667 0.000 0.015 

59 0.4 0.1 1.2 60 1.337 1.335 0.002 0.141 

60 0.8 0.1 1.2 60 0.667 0.677 0.010 1.446 

61 0.2 0.15 1.2 60 6.008 5.999 0.009 0.150 

62 0.4 0.15 1.2 60 3.004 3.003 0.001 0.027 

63 0.8 0.15 1.2 60 1.511 1.506 0.005 0.334 

64 0.2 0.05 1.4 60 0.679 0.681 0.002 0.279 

65 0.4 0.05 1.4 60 0.340 0.342 0.002 0.443 

66 0.8 0.05 1.4 60 0.170 0.173 0.003 1.849 

67 0.2 0.1 1.4 60 2.717 2.723 0.006 0.223 

68 0.4 0.1 1.4 60 1.358 1.361 0.003 0.222 

69 0.8 0.1 1.4 60 0.679 0.692 0.013 1.951 

70 0.2 0.15 1.4 60 6.113 6.110 0.003 0.049 

71 0.4 0.15 1.4 60 3.056 3.056 0.000 0.010 

72 0.8 0.15 1.4 60 1.528 1.528 0.000 0.024 

73 0.2 0.05 1.6 60 0.692 0.697 0.005 0.778 

74 0.4 0.05 1.6 60 0.346 0.347 0.001 0.297 

75 0.8 0.05 1.6 60 0.173 0.182 0.009 5.158 

76 0.2 0.1 1.6 60 2.767 2.782 0.015 0.554 

77 0.4 0.1 1.6 60 1.388 1.386 0.002 0.119 

78 0.8 0.1 1.6 60 0.692 0.708 0.016 2.321 

79 0.2 0.15 1.6 60 6.225 6.223 0.002 0.025 

80 0.4 0.15 1.6 60 3.113 3.108 0.005 0.171 

81 0.8 0.15 1.6 60 1.556 1.551 0.005 0.320 

Minimum 0.000 0.001 

Maximum 0.016 9.122 

Mean 0.005 0.894 

 
After conducting experiment and gathering data 
sets, the ANN model development is approached. 
ANN model for prediction is based on the feed – 
forward ANN with back propagation training 
algorithm. The proposed three-layer ANN 
architecture has four input parameters - corner 

radius, feed, depth of cut, cutting speed and one 
target parameter - surface roughness. The input 
data is on the format 4x81, and target data is on 
the format 1x81. The optimal number of hidden 
neurons can be determined using various rules, 
but obviously there is no general procedure to 
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find an optimal ANN architecture, and the 
mentioned rules can serve only as a good 
guideline. For the purposes of this paper, optimal 
ANN architecture will be found based on the trial 
and error method. Development of ANN model is 
conducted in Matlab within artificial neural 
network toolbox through Fitting app, which is 
used for Input-Output and Curve Fitting tasks. 
Also, Matlab has apps for another type of tasks 
such as: Pattern Recognition and Classification, 
Clustering, and Dynamic Time Series. Data set for 
training consist of 81 samples which were 
randomly divided into three parts in proportion 
70:15:15. The first part (57 samples) was used as 
an ANN training set, the second part (12 samples) 
as validation set, and the third part (12 samples) 
as the testing set. For all three dataset parts Mean 
Squared Error (MSE) values were calculated as 
performance measure. As a training algorithm 
Levenberg – Marquardt was used as a first choice 
for supervised learning (Figure 2). 
 

 
Fig. 2. Training process of optimal architecture. 

 
In this study numerous architectures were tested 
and, as an optimal solution, showed architecture 
with six neurons in hidden layer. The process of 
training, validation and testing of ANN model, 
regression and error histogram can be seen in 
Figure 3 and Figure 4, respectively. Based on the 
mentioned above, it can be seen that the 
developed ANN model is well trained, given the 
fact that correlation coefficient is R=0.99999, 

which is a measure of how well the variation in 
the output is explained by the targets. If this 
number is R=1, then there is a perfect correlation 
between targets and outputs. In our example, the 
number is very close to 1, which indicates a good 
fit. 

 
Fig. 3. Performance of optimal architecture 

 
Fig. 4. Regression of optimal architecture. 

 
The prediction results are shown together with 
the experimental results in Table 1. After that, PE 
and AE were calculated for each individual 
experiment (Table 1). 
 
During the training experiments, the maximum 
absolute error is 0.016 μm, and the maximum 
percentage error is 9.122 %. The mean absolute 
error during the training experiments is 0.005 
μm and the mean percentage error is 0.894 %. 
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The mean absolute error of the confirmation 
experiments is 0.012 μm and the mean 
percentage error is 1.303 %. 
 
Additional validation of the obtained model was 
performed through additional 16 confirmation 
experiments (Table 4). Confirmation 
experiments were conducted for "unknown" 

machining parameters. The mean absolute error 
of the confirmation experiments is 0.012 μm and 
the mean percentage error is 1.303 %. A small 
percentage error, and especially a small average 
absolute error, additionally indicate the validity 
of the developed ANN model and the possibility 
of its practical implications in real turning 
processes. 

 
Table 4. Confirmation results. 

No. r (mm) f (mm/rev) ap (mm) vc (m/min) Ram (µm) Rap (µm) AE (%) PE (µm) 

1 0.4 0.07 1.3 52 0.635 0.641 0.006 0.876 

2 0.8 0.07 1.3 52 0.318 0.318 0.000 0.131 

3 0.4 0.13 1.3 52 2.191 2.144 0.047 2.158 

4 0.8 0.13 1.3 52 1.096 1.090 0.006 0.524 

5 0.4 0.07 1.5 52 0.642 0.659 0.017 2.577 

6 0.8 0.07 1.5 52 0.321 0.330 0.009 2.722 

7 0.4 0.13 1.5 52 2.214 2.194 0.020 0.912 

8 0.8 0.13 1.5 52 1.107 1.111 0.004 0.368 

9 0.4 0.07 1.3 58 0.649 0.660 0.011 1.760 

10 0.8 0.07 1.3 58 0.324 0.326 0.002 0.655 

11 0.4 0.13 1.3 58 2.238 2.230 0.008 0.340 

12 0.8 0.13 1.3 58 1.119 1.125 0.006 0.504 

13 0.4 0.07 1.5 58 0.655 0.674 0.019 2.854 

14 0.8 0.07 1.5 58 0.328 0.338 0.010 2.940 

15 0.4 0.13 1.5 58 2.261 2.270 0.009 0.404 

16 0.8 0.13 1.5 58 1.132 1.145 0.013 1.132 

Minimum 0.000 0.131 

Maximum 0.047 2.940 

Mean 0.012 1.303 

 
 
4. CONCLUSION 
 
In this research, an ANN model was developed 
and proposed that models the conditions under 
which the experimental studies of turning 
process of Inconel 601 were performed. The 
model establishes a cause-and-effect 
relationship between the input variables 
(processing parameters and the geometry of the 
cutting tool), and surface roughness of the 
machined surface as an output variable. 
 
With an adequate selection of input variables, 
the mean arithmetic roughness of the surface in 
the range of 0.156 μm to 6.225 μm can be 
obtained by turning process. The obtained 
surface roughness values indicate the possibility 
of controlling the quality of the machined 
surface in a very wide range. This is very 
important considering that the goal is not to get 
the highest possible quality of the machined 

surface, but the required level (required by the 
technical documentation). The minimum value 
of Ra indicates the possibility of obtaining 
extremely high qualities of the machined surface, 
which avoids subsequent finishing operations, 
which also contributes to the reduction of 
processing time and processing costs. 
 
The developed ANN model provides modeling of 
the final turning process, as well as the selection 
of input variables with which a certain surface 
roughness will be achieved with acceptable 
prediction errors. The obtained percentage and 
absolute errors indicate the possibility of 
practical application of the developed network. 
Namely, the maximum PE values during training 
and confirmation experiments were 9,122% and 
2,940%, respectively. Furthermore, the 
maximum AE values during training and 
confirmation experiments were 0.016 µm and 
0.047 µm, respectively. AE quantifies the real 
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deviations of the required value of Ra, in relation 
to the obtained value of Ra. Absolute deviations 
of the order of several tenths of a micrometer, 
and in most cases even smaller, can be considered 
acceptable from a practical point of view. 
 
Future research will be focused on the 
consideration of including a larger number of 
input and output variables from the turning 
process, and the optimization of the selection of 
machining parameters, geometrical 
characteristics of cutting inserts, as well as the 
consideration of a larger number of typical 
interventions in turning processing. 
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